organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Yue-Qing Pu, Jia-Hui Chen and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.058 wR factor = 0.201 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-{[3-(2-Chlorophenyl)-1,2,4-oxadiazol-5-yl]methyl}-1-[(2,6-dimethylphenyl)aminocarbonylmethyl]piperazine

The title compound, $C_{23}H_{26}ClN_5O_2$, was synthesized by the reaction of 4-[(2,6-dimethylphenyl)aminocarbonylmethyl]piperazine and 5-chloromethyl-3-(2-chlorophenyl)-1,2,4oxadiazole. In the structure, there are intramolecular C-H···N, N-H···N and C-H···O hydrogen bonds, and intermolecular N-H···O hydrogen bonds. Received 23 May 2005 Accepted 31 May 2005 Online 10 June 2005

Comment

Piperazine derivatives are of great interest because of their biological properties. Some derivatives of piperazine have antifilarial, antiamebic and spermicidal properties (Sonurlikar *et al.*, 1977). Some show high efficacy in treating or preventing neuronal damage or stimulating nerve growth (Tomlinson *et al.*, 2004). Some also treat psychosis and bipolar disorders (Aicher *et al.*, 2004) or act as neurokinin antagonists (Janssens *et al.*, 2004).

The molecular structure of the title compound, (I), is shown in Fig.1. The dashed lines indicate intramolecular $C-H\cdots N$, $C-H\cdots O$ and $N-H\cdots N$ hydrogen bonds (Table 2). The bond lengths and angles are given in Table 1. In the crystal structure, molecules are linked by $N-H\cdots O$ hydrogen bonds (Table 2 and Fig. 2), forming a three-dimensional network.

Experimental

4-[(2,6-Dimethylphenyl)aminocarbonylmethyl]piperazine (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added. 3-(2-Chlorophenyl)-5-chloromethyl-1,2,4-oxadiazole (20 mmol) in acetone(20 ml) was added to this mixture. The resulting mixture was refluxed for 6 h. Concentration of the mixture under reduced pressure afforded crude compound (I). Pure compound (I) was obtained by recrystallization from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃, p.p.m.): δ 8.58 (*m*, 1H), 7.92–7.94 (*m*, 1H), 7.51–7.53 (*m*, 1H), 7.40–7.44 (*m*, 1H), 7.35–7.39 (*m*, 1H), 7.05–7.09 (*m*, 3H), 3.99 (*s*, 2H), 3.21 (*m*, 2H), 2.78 (*m*, 8H), 2.21 (*s*, 6H).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the molecular structure of (I); the dashed lines indicate intramolecular C-H···O, C-H···N and N-H···N hydrogen bonds. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level

Figure 2

Part of the crystal structure of (I). The dashed line indicates the intermolecular $N-H\cdots O$ hydrogen bond.

Crystal data

$C_{23}H_{26}CIN_5O_2$
$M_r = 439.94$
Monoclinic, $P2_1/a$
a = 12.296 (1) Å
b = 10.587 (2) Å
c = 17.164 (2) Å
$\beta = 99.77 \ (3)^{\circ}$
V = 2201.8 (6) Å ³
Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 4061 measured reflections 3861 independent reflections 2427 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.201$ S = 1.013861 reflections 281 parameters H-atom parameters constrained $D_x = 1.327 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.4 \times 0.3 \times 0.2 \text{ mm}$

 $\theta_{\text{max}} = 25.0^{\circ}$ $h = -14 \rightarrow 0$ $k = 0 \rightarrow 12$ $l = -20 \rightarrow 20$ 3 standard reflections
every 200 reflections
intensity decay: none

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.1259P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.41 \ e \ Å^{-3} \\ \Delta\rho_{min} = -0.30 \ e \ Å^{-3} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.023 \ (4) \end{split}$$

Cl-C3	1.732 (3)	N4-C11	1.458 (4)
O1-C8	1.321 (4)	N4-C12	1.462 (4)
O1-N1	1.408 (4)	N5-C15	1.342 (4)
O2-C15	1.221 (4)	N5-C16	1.440 (4)
N1-C7	1.290 (4)	C4-C7	1.475 (4)
N2-C8	1.285 (4)	C8-C9	1.496 (5)
N2-C7	1.376 (4)	C10-C11	1.506 (5)
N3-C13	1.464 (4)	C12-C13	1.508 (5)
N3-C9	1.467 (4)	C14-C15	1.528 (4)
N3-C10	1.474 (4)	C17-C22	1.490 (5)
N4-C14	1.444 (4)	C21-C23	1.501 (5)
C8-O1-N1	106.5 (3)	N2-C8-C9	131.0 (3)
C7-N1-O1	103.5 (3)	01-C8-C9	115.8 (3)
C8-N2-C7	103.1 (3)	N3-C9-C8	113.1 (3)
C13-N3-C9	111.7 (3)	N3-C10-C11	110.1 (3)
C13-N3-C10	109.5 (3)	N4-C11-C10	111.1 (3)
C9-N3-C10	109.2 (3)	N4-C12-C13	109.8 (3)
C14-N4-C11	111.3 (3)	N3-C13-C12	110.9 (3)
C14-N4-C12	112.2 (3)	N4-C14-C15	113.5 (3)
C11-N4-C12	108.4 (2)	O2-C15-N5	124.0 (3)
C15-N5-C16	124.2 (3)	O2-C15-C14	121.3 (3)
C2-C3-Cl	117.1 (3)	N5-C15-C14	114.6 (3)
C4-C3-Cl	121.6 (3)	C21-C16-N5	119.3 (3)
C5-C4-C7	118.1 (3)	C17-C16-N5	117.8 (3)
C3-C4-C7	124.4 (3)	C18-C17-C22	120.6 (3)
N1-C7-N2	113.7 (3)	C16-C17-C22	121.9 (3)
N1-C7-C4	123.2 (3)	C16-C21-C23	122.4 (3)
N2-C7-C4	123.1 (3)	C20-C21-C23	120.2 (3)
N2-C8-O1	113.2 (3)		

Table 2		
Hydrogen-bond geometry	(Å,	°).

Table 1

Salaatad

accompatria parameters (Å °)

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N5-H5A\cdots N4$	0.86	2.38	2.747 (4)	106
$N5-H5A\cdots O2^{i}$	0.86	2.37	3.070 (3)	138
$C13-H13A\cdots N2$	0.97	2.59	3.247 (5)	125
$C23 - H23A \cdots O2$	0.96	2.56	3.068 (4)	113
$C23-H23A\cdots N5$	0.96	2.43	2.896 (4)	110

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1.$

All H atoms were placed geometrically at C—H distances of 0.93–0.97 Å and an N—H distance of 0.86 Å, and included in the refinement in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Aicher, T. D., Chen, Z., Le, H. Y., Martin, F. M., Pineiro-Nunez, M. M., Rocco, V. P., Ruley, K. M., Schaus, J. M., Spinazze, P. G. & Tupper, D. E. (2004). Patent WO 2004014895.

Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Janssens, F. E., Sommen, F. M., De Boeck, B. C. A., Leenaerts, J. E., Van Roosbroeck, Y. E. M. & Diels, G. S. M. (2004). Patent WO 2004033428. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). *SHELXTL*. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sonurlikar, U. A., Shanker, B., Kirke, P. A. & Bhide, M. B. (1977). Bull. Haffkine Inst. 5, 94–96.

Tomlinson, R., Lauffer, D. & Mulican, M. (2004). US Patent 2004034019.